Meaningful Clustering of Senses Helps Boost Word Sense Disambiguation Performance

نویسنده

  • Roberto Navigli
چکیده

Fine-grained sense distinctions are one of the major obstacles to successful Word Sense Disambiguation. In this paper, we present a method for reducing the granularity of the WordNet sense inventory based on the mapping to a manually crafted dictionary encoding sense hierarchies, namely the Oxford Dictionary of English. We assess the quality of the mapping and the induced clustering, and evaluate the performance of coarse WSD systems in the Senseval-3 English all-words task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Language-independent Sense Clustering Approach for Enhanced WSD

We present a method for clustering word senses of a lexical-semantic resource by mapping them to those of another sense inventory. This is a promising way of reducing polysemy in sense inventories and consequently improving word sense disambiguation performance. In contrast to previous approaches, we use DijkstraWSA, a parameterizable alignment algorithm which is largely resourceand language-ag...

متن کامل

Meaningful Clusters

We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

متن کامل

An Optimized Combinatorial Approach of Learning Algorithm for Word Sense Disambiguation

Word sense disambiguation is the process to find best sense of ambiguous word from the existing senses to remove the ambiguity. This thesis work is an attempt to optimize the word sense disambiguation method. Most commonly supervised machine learning algorithms were used to solve this problem and improve the performance. Some attempts were made to use unsupervised machine learning algorithms al...

متن کامل

Iterative Constrained Clustering for Subjectivity Word Sense Disambiguation

Subjectivity word sense disambiguation (SWSD) is a supervised and applicationspecific word sense disambiguation task disambiguating between subjective and objective senses of a word. Not surprisingly, SWSD suffers from the knowledge acquisition bottleneck. In this work, we use a “cluster and label” strategy to generate labeled data for SWSD semiautomatically. We define a new algorithm called It...

متن کامل

Two Knowledge-based Methods for High-Performance Sense Distribution Learning

Knowing the correct distribution of senses within a corpus can potentially boost the performance of Word Sense Disambiguation (WSD) systems by many points. We present two fully automatic and language-independent methods for computing the distribution of senses given a raw corpus of sentences. Intrinsic and extrinsic evaluations show that our methods outperform the current state of the art in se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006